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Abstract

We study empirically the price dynamics in the long-distance bus market
using posted fares by Flixbus, the market leader in Europe. We find that,
at a given point in time, the fare increases with the number of sold seats.
This result largely explains, why the lowest available fare increases as the
departure date approaches. No evidence is found in favor of intertemporal price
discrimination, probably because of low consumer-heterogeneity throughout
the entire booking period that characterizes the long-distance bus market.

JEL classification: L92; L11; D22, C13
Keywords: capacity effect, Flixbus, dynamic pricing, revenue manage-

ment, temporal effect.

1 Introduction

A long-distance bus service is a public transport service that carries people by bus
between cities. The buses that are used generally make a single stop at one location
in (or nearby) a city and travel non-stop over longer distances. For this reason,
intercity bus service is also used as a synonym of long-distance bus service.

∗We are grateful to two anonymous reviewers, whose insightful comments contributed to improve
this paper. We thank the participants to 2nd TEM Conference at Bard (AO). All errors are ours.
†Department of Economics and Management, University of Pavia, Via S. Felice 5, 27100 Pavia,

Italy. Tel +39 0382 986226; fax +39 0382 986228; email: alberto.gaggero@unipv.it. Corre-
sponding author.
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In Europe the long-distance bus service sector has grown steadily during the
recent years. One of the prominent European countries in this industry is Germany
(Dürr and Hüschelrath, 2017). It is not a coincidence that Flixbus, the current
market leader of long-distance bus service in Europe, was founded in Germany in
2011.

Following the market liberalization in January 2013, the German long-distance
bus service sector showed an exponential growth in traffic.1 The fast establishment
of long-distance bus services in the market of passenger transportation is achieved
by providing customers with low-cost travel options in a dispersed network of des-
tinations. After a vibrant introduction phase characterized by tough pricing, fierce
competition, mergers and acquisitions, the lead of the market is taken by Flixbus,
whose market share in Germany is 95% in 2018 (Statista, 2019b).

From its very beginning, Flixbus rests on the increasing capabilities of digital
business models. This is reflected by its web-based selling strategy in which customers
book their bus journeys with their mobile phone application or on the company’s
web page. In this framework, Flixbus can instantaneously track the evolution of
sales and can adjust fares over time. Bus travelers may therefore face different prices
for the same journey depending on the day of their booking and the utilization of
available seat capacity.

The reason for such possible price difference is a profit-maximizing strategy re-
ferred to as Revenue Management (RM). Such strategy was first implemented in
the airline industry and it is now also adopted by railways, cruise lines, hotel firms,
rental car firms, and also by long-distance bus service providers.

The airline RM literature suggests that during the booking period two effects
could be in place: the capacity effect and the temporal effect (Alderighi et al., 2015).
The capacity effect occurs when, at a given point in time, fares have a stepwise
distribution over seats (Dana, 1999a). This means that the first seat on sale is
cheaper, or at most equally priced, relative to the second seat on sale, which is
cheaper, or at most equally priced, relative to the third seat on sale, and so on. If
the capacity effect is in place, we observe an increasing pattern of the lowest available
fare as we approach the departure date because the bus fills up day by day and only
high-fare tickets remain on sale at the end of the booking period.

The temporal effect instead is driven by the time dimension and is captured by the
day of the booking. The fare variation as the departure date approaches is explained
with: i) the seat’s decreasing option value, which pushes the fare down in order to
spur the sale of the seat that otherwise run the risk to remain unsold (Alderighi et al.,

12.5 million passengers carried in the pre-liberalization year jump to 8.2 millions in 2013 and
reach 23.2 millions in 2015 (Statista, 2019a).
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2017); ii) the price discrimination strategy, which pushes the fare up, especially in
the proximity to departure, in order to extract higher surplus from price-insensitive
late bookers (Gaggero, 2010). This latter effect is also known as ‘intertemporal price
discrimination’ (Gaggero and Piga, 2011).

In this work we investigate the existence of the above described effects in the
long-distance bus market using primary fare data from Flixbus on selected one-way
bus journeys taking place in one week of September 2017. Fares are collected daily,
from 28 days until 1 day before departure, so that it is possible to observe their
variation as the departure date approaches.

We apply panel fixed-effects techniques and correct for both endogeneity and
sample selection. We find significant evidence in favor of the capacity effect, which
largely explains the fare increase as the departure date approaches. This effect is,
to some extent, mitigated by the seat’s decreasing option value that comes into play
during the last week before departure. No evidence is found in favor of intertemporal
price discrimination, probably because of the very small number of price-insensitive
late booking passengers in the long-distance bus market.

This paper continues as follows. The next section revises the relevant literature.
Section 3 explains the process of data collection, followed by a descriptive analysis in
Section 4. Section 5 conducts the econometric investigation with the description of
the model, the discussion of the econometric issues and the illustration of the results.
Finally, the concluding remarks are made in Section 6.

2 Literature review

Because RM was first applied by airline companies, the first papers studying RM
pertain to the airline sector (Belobaba, 1987; Kimes, 1989). Subsequently RM has
been extended to other sectors, such as: railways (Bharill and Rangaraj, 2008; Berto
and Gliozzi, 2018), car rentals (Carroll and Grimes, 1995; Haensel et al., 2012),
cruises (Maddah et al., 2010; Sun et al., 2011), hotels (Abrate et al., 2012; Guizzardi
et al., 2019), and also long-distance bus service (Augustin et al., 2014; Grimaldi et al.,
2017).

The analogies that can be found in the pricing behavior of all these industries
are due to the fact that they all rely on the same RM techniques, which are not
specifically developed for one sector.2 Nevertheless, we can also find some differences

2RM is a pricing strategy that is applicable when the firm offers a limited capacity of a perishable
service or good, the demand is uncertain, and customers are heterogenous in terms of their price-
sensitivity (Weatherford and Bodily, 1992).
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amongst industries that may affect the way in which the RM strategy is conducted.
For example, the existence of intermediate stops in a long-distance bus journey makes
this transport service more similar to rail transport or to the delivery of goods by
truck rather than to air transport. One bus seat sold for the A-D journey with
intermediate stops in B and C means one seat less on sale for the intermediate
segments A-B, A-C, B-C and B-D. This feature makes the calculation of the shadow
price of capacity more difficult, but the process of pricing a seat remains unchanged.
A seat sold today cannot be sold at a higher price later on. For this reason, a fare
set for today needs to account for the lost opportunity of selling the seat at a later
date (Dana, 1999a).

Because a seat is a highly perishable product, its option value tends to zero as the
departure comes closer. Therefore, the theoretical model of Talluri and Van Ryzin
(2004) predicts a declining time-path of fares due to a falling option value. Strategic
customers may, however, recognize the falling option value of seats and postpone
their bookings in the hope of last-minute offers (Deneckere and Peck, 2012). In
order to discourage such behavior, the company commits to fares increasing over
time (Möller and Watanabe, 2010).

Alderighi et al. (2017) show that pricing in the airline industry hinges on a fare
distribution which consists in pre-assigned seats to distinct fare classes, so-called
‘fare buckets’. A bucket is described by a set of consecutive seats with the same fare
tag. Based on the forecasts, the firm decides the set of fare classes and the number
of seats contained in each bucket before the actual booking is opened. The resulting
fare distribution determines the systematic fare changes as the airplane fills up. This
effect in airline literature is sometimes referred to as ‘systematic peak-load pricing’
because in case of strong demand higher fares allow to shift some consumers from
peak to off-peak times (Borenstein and Rose, 1994).

Dana (1999a) derives an optimal fare distribution from a theoretical point of view.
Price dispersion is explained in a model with demand uncertainty, costly capacity
(perishable assets), and price commitments. Before the actual demand is known, the
firm is indifferent between selling a seat at a guaranteed low price or selling it at a
higher price with uncertainty. The uncertainty emerges from the fact that the firm
does not know whether it will face low or high demand during the booking period.
The idea behind Dana’s model is that the firm sets its optimal fares by adding a
fixed markup to the cost of capacity. The cost of capacity can be best understood as
the cost of ‘reserving’ seat inventory for the uncertain event of high demand. That
is, the cost of capacity is inversely related with the chance of selling it. From this
feature it follows that the optimal fare distribution shows an increasing profile as
capacity (i.e. available aircraft seats) fills up. That means price dispersion cannot
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only be attributed to the need of segmenting customers, but also to the uncertain
nature of demand. Alderighi et al. (2015) tackle this issue empirically in the airline
industry and find support for fares increasing with a flight’s load factor.

As discussed by Borenstein and Rose (1994), there also exists a ‘stochastic peak-
load pricing’ component, which accounts for changes in the expected demand during
the booking period. Therefore, there may be the need to adjust the fare distribution
once the actual demand is revealed. Bilotkach et al. (2015), for example, show that
RM interventions of low-cost carriers are more frequent when the actual demand
deviates from the forecast.

To sum up, the RM literature shows that there can be two causes of price vari-
ation over time, loosely referred to as dynamic pricing. First, there is a systematic
part of dynamic pricing accomplished by a predefined fare distribution, which al-
lows to implement peak-load pricing to shift demand between peak and off-peak
times; furthermore, the increasing stepwise slope of a fare distribution accounts for
the shadow cost of capacity. Second, there is a stochastic part of dynamic pricing
that deals with the adjustments of the fare distribution during the booking period
to respond to changes in the expected demand.

The German Federal Office for Goods Transport indicates that bus service providers
engage in dynamic pricing (Federal Office for Goods Transport, 2016, p. 34). In the
review of the German long-distance bus market, it is observed that fares are the
most expensive on the day before departure. Moreover, fares tend to be less expen-
sive during off-peak times. It is therefore not so much a question of whether dynamic
pricing is applied in the long-distance bus service industry, but rather to understand
the prevailing effect that drives the evolution of bus fares during the booking period.

The literature on pricing of long-distance bus services is quite recent and there-
fore largely unexplored. Sampling observations for six European countries Fageda
and Sansano (2018) find that long-distance bus fares are cheaper between high-
income cities. This result, combined with the finding that higher bus frequency is
observed between high-income cities, implies that low-income cities experience both
higher prices and lower quality of service. In a fare comparison between a mature
long-distance bus market (U.S.) and a young long-distance bus market (Germany),
Augustin et al. (2014) find that distance and number of stops are significant deter-
minants of the ticket price, while the bus frequency is only a relevant explanatory
variable in the German market.

The work by Blayac and Bougette (2017) shows that long-distance bus operators
adopt an aggressive pricing strategy when they start a new link between cities in
order to induce demand for the new services, then, once the service becomes popular
to more customers, they increase fares. Dürr et al. (2016) analyze the impact of
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competition on the fares of the German long-distance bus market using a sample of
bus services operated during one week in November 2014 and one week in January
2015. In line with the predictions of economic theory they find that route-level
average prices tend to decrease with competition, i.e. the number of active bus
companies on a particular route. Their empirical analysis hinges on secondary fare
data collected seven days before departure from an online search engine, thus little
attention is given to the evolution of fares during the booking period.

An in-depth analysis on the evolution of long-distance bus fares over time lacks
in the literature, which is largely devoted to airline pricing. The aim of the present
paper is to fill this gap and expand the empirical research of RM to the long-distance
bus service industry.

3 Sample collection and description

This paper is based on primary data directly retrieved from Flixbus’ website. Our
sample considers four domestic city pairs with both endpoints in Germany (Brunswick-
Düsseldorf, Hanover-Bremen, Munich-Nuremberg and Tübingen-Freiburg), plus one
international city pair linking Germany to Italy (Stuttgart-Milan). Each city pair
may include more than one route.3

The database comprises information on the posted fares of one-way bus journeys
scheduled in the week from September 4, 2017 to September 10, 2017. The fares are
collected on a daily basis over a period of four weeks prior to the departure date. It
is worth noticing that Flixbus offers only one ticket class, therefore all tickets carry
the same characteristics.4 This feature constitutes a main advantage of our dataset
as it makes our data fit very well the settings described by various theoretical RM
models (Dana, 1999a; McGill and van Ryzin, 1999; Talluri and Van Ryzin, 2004).

We acknowledge the limits of using a sample made by a relatively small number of
bus connections, however, the selected city pairs represent the population of Flixbus
routes very well, which are heterogeneous in terms of distance covered by the bus
services, the frequency of departures, and the competitive environment.

3In our sample the city pair Munich-Nuremberg comprises the route Munich(Froettmaning)-
Nuremberg and the route Munich(Central)-Nuremberg; the city pair Stuttgart-Milan includes
Stuttgart(North-Milan) and Stuttgart(Airport)-Milan; the other city pairs are linked by only one
route each.

4The collected fares include tax and handling fees. Furthermore, all tickets include hand luggage
(max 7 kg) and a baggage allowance of 20 kg. However, all fares are net of add-ons and other fees,
such as possible charges for the method of payment. Fares are for one-way bus journeys and quoted
in euro.
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Table 1: City pairs included in the analysis

City pair Nbr. weekly Distance Travel time Alternative
services (km) (hrs:min) direct connection

Brunswick - Düsseldorf 17 354 5:20-5:40 Train
Hanover - Bremen 29 128 1:35 Train
Munich - Nuremberg 153 169 1:50-3:10 Train
Stuttgart - Milan 32 505 6:45-9:45 Airplane
Tübingen - Freiburg 37 159 2:25-4:04 None

NOTE. Distance is retrieved from Google Maps and measures the length of the shortest road itinerary connecting
the city pair. Information on alternative travel options is retrieved from the online travel portal goeuro.de.

The data collection follows the approach adopted by Alderighi et al. (2017), in
which the fare queries for a particular journey are iterated over an increasing number
of seats.5 By doing so, we are able to retrieve fares up to a maximum of 40 seats,
the largest possible seat reservation for a single booking on Flixbus’ website. This
allows, at least partially, to determine the number of available seats on a given bus
journey at a given day to departure.

Table 1 provides an overview of the sample by including for each city pair the
distance, the bus travel time and the presence of alternative means of transportation.
Because Flixbus has the dominant position on the long-distance bus market, the
competitive environment for Flixbus is affected by the availability of close substitutes,
i.e. direct connections offered by train and plane on the route (Federal Office for
Goods Transport, 2016, p. 28).

When the long-distance bus services started, competition mainly took place on
journeys to large German cities where bus service providers may expect high de-
mand and revenues (Federal Office for Goods Transport, 2016, p. 1). In line with
this presumption, the city pair Munich-Nuremberg exhibits by far the largest num-
ber of weekly connections in our sample (153). On the contrary, Flixbus offers only
17 weekly services on the low-demand market Brunswick-Düsseldorf. Most interest-
ingly, also Deutsche Bahn (German Railways) have not identified a sufficiently large
demand for this city pair, since they only operate few direct connections on the line
Brunswick-Düsseldorf. These findings confirm the assessment of the Federal Office
for Goods Transport arguing that long-distance bus service providers mainly com-
pete for customers on highly attractive routes of long-distance rail services (Federal
Office for Goods Transport, 2016, p. 50).

5Appendix A.1 describes in detail how the fare data are processed.
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There is a moderate number of bus services (29) from Hanover to Bremen, even
though both cities have more than half a million citizens. Most interestingly, a simi-
lar bus frequency (32) is observed between the much smaller towns of Tübingen and
Freiburg: this result suggests that the supply of long-distance bus service is not nec-
essarily based on the city’s size. In fact, a large number of students live in Tübingen
and Freiburg, whose high demand for affordable travel options induces Flixbus to
provide more bus services on this city pair. Furthermore, Tübingen-Freiburg repre-
sents a particular case in the sample, since there is no direct railway service linking
the two towns. For this reason, on this city pair Flixbus has a competitive advantage,
not only in terms of a higher travel comfort offered by a direct link, but also in terms
of a shorter travel time.6

Finally, on the city pair Stuttgart-Milan there is no direct connection by train,
but easyJet serves this route on a daily basis. Because the business model of low-cost
carriers is also based on the presence of a large portion of price-sensitive travelers,
the competitor of Flixbus on this city pair is to be sought in aviation rather than in
rail.

4 Descriptive analysis

4.1 The fare distribution

An important aspect of the RM strategy, which is the hallmark of airline pricing, is
to define the different fare classes to which transport service providers assign a pre-
determined number of seats. This practice establishes a sequence of ascending fares
with respect to the seats. The result is a fare distribution with the seats belonging
to the same fare class gathered in groups called ‘buckets’.

Figure 1 provides an example of a fare distribution set by Flixbus for the bus
service Stuttgart(North)-Milan leaving Stuttgart at 10:40 and arriving in Milan at
19:05 on September 10, 2017. The fare distribution is depicted at different days to
departure in order to gain a first insight on the temporal evolution of fares as the
departure date approaches.

The top-left diagram shows the fare distribution 28 days prior to departure and
depicts a situation in which there are at least 40 seats available, i.e. data are censored.
One week later (top-right diagram) the seats on sale are 39, i.e. data are uncensored,

6Consider as a example the following two travel options for Tübingen-Freiburg with a similar
departure time on weekdays: i) departure at 8:00 am, travel time of 2 hours and 54 minutes with
two changes by train; ii) departure at 7:35 am, travel time of 2 hours and 25 minutes with a direct
link by Flixbus.
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and we are able to observe the entire fare distribution. The first 13 seats are on sale
at e25.00 and represent the first bucket, then the second bucket is given by the 14th

up to the 30th seat, priced e27.90. The 31st up to the 35th seat make the third bucket
with the price of e32.90, followed by one-seat buckets, sequentially priced e37.90,
e42.90, e49.90 and e59.90.

Figure 1: Fare distribution at different days to departure, Stuttgart(North)-Milan.

The lowest available fare is at the very left of the distribution and equals e25.00.
From Flixbus’ website, we retrieve the information that e25.00 is the starting fare
for bus journeys from Stuttgart to Milan. This implies that we have observed the
very first bucket, even though we could not estimate its initial size; the last bucket,
which consists of one single seat in the present case; and all intermediate buckets. It
is worth noticing that the top fare, i.e. the fare of the last bucket, is e59.90 which
is 140 percent more expensive than the e25.00 starting fare. This will eventually
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translate into intertemporal price dispersion over the entire booking period (Gaggero
and Piga, 2011).

In all diagrams the fare distribution is displayed by an increasing function of
capacity utilization, which is in line with the empirical evidence of the airline industry
(Alderighi et al., 2017). It should be pointed out, however, that while for airlines the
size of each fare bucket is usually similar, in the case of Flixbus the seats included in
lower-priced buckets often outnumber those ones contained in higher-priced buckets,
as shown by the two top diagrams of the figure.

Dana (1999a) argues that the optimal fare distribution is increasing because the
cost of seat inventory is inversely related with the probability of selling it. The
rare occurrence of sold out events in our sample (less than 4%) suggests that the
cost of reserving seats for high demand events is relatively high in the long-distance
bus market. This possibility is reflected in a particularly steep slope of the fare
distribution, especially for the last (high-priced) seats, which have the lowest chance
of being sold. In other words, as sold out is very unlikely in the long-distance
bus service industry, Flixbus spares only a very limited number of seats for price-
insensitive, late-booking customers.

Figure 1 provides also a telling example of both the systematic and the stochastic
elements of dynamic pricing discussed in Section 2. Broadly speaking, the systematic
part is related to the movements along the curve, while the stochastic part becomes
evident by a reshape of the fare distribution itself. Considering the fare distribution
at 21 and at 14 days to departure, we observe that the size of the first bucket
decreases by three seats, while the fare distribution itself remains unchanged. In this
case, three seats have been sold at e25.00 as pre-specified in the fare distribution,
with the consequence that the size of the first bucket shrinks from 13 to 10 seats.

Things look different if we compare the fare distributions 14 and 7 days before the
departure date. The lowest available fare is still e25.00 seven days prior departure,
however, the structure of the overall fare distribution has changed in comparison
with the fare distribution observed one week earlier. In particular, the size of the
second bucket, priced e27.90, and the size of the third bucket, priced e32.90, are
respectively reduced from 17 to 15 seats and from 5 to 4 seats. Looking at the
difference in the total number of available seats, we infer that 7 seats are sold within
this week despite the size of the first bucket only shrinks by 4 seats, from 10 to 6.
These numbers indicate a reallocation of seats from the third and the second buckets
to the first bucket of the fare distribution.7

7Airline literature suggests that such rearrangements of the fare distribution are used as a
strategy to strike a balance between two conflicting goals. Shifting seats from higher to lower buckets
implies a reduction in the average fare of the overall distribution, and thereby enables to account

10



If on the one hand we observe fares being shifted downwards in the event that
demand falls short of expectation, it seems conceivable that on the other hand fares
are moved from lower to higher buckets when demand is higher than expected. We
can find such a scenario comparing the fare distribution at 7 and at 4 days to de-
parture. In this three-day period 16 seats are sold. Interestingly, the e37.90 bucket
comprises only one seat 7 days prior departure, while it is enlarged to seven seats
3 days later. The sharp and possibly unexpected high demand may be the reason
triggering this upward shift in fares.8

To sum up, the observed reallocation of fares points to active RM interventions
to account for stochastic demand shocks. This suggests that the pricing strategy
of Flixbus may encompass both a systematic component (increasing stepwise fare
distribution) and a stochastic component (adjustment of the fare distribution due to
unexpected changes in the demand).

4.2 The fare on the first seat on sale

As evinced from Figure 1, the fare on the first seat on sale, henceforth simply ‘fare’,
is the lowest available fare. This initial fare varies over time for a particular trip
until scheduled departure time approaches. The changes occur along a predefined
path, i.e. along a stepwise fare distribution, which can also be altered over time.

If the predictions of the theoretical model of airline literature apply to Flixbus,
one of the reasons explaining the increase of fare over time is because less seats are
available on the bus. The monotonic increasing fare distribution showed in Figure 1
supports this view: as the departure date approaches, more seats are sold, and, as a
consequence, the first seat on sale climbs up the fare distribution.

The main summary statistics of the fare are reported in Table 2. The results are
sorted by city pairs and include the minimum, the maximum, the median and the
mean of the fare; the table also includes the mean of the fare over distance (i.e. mean
per 100km) to make the statistic comparable across city pairs of different length.

The table suggests a correlation between fare and travel distance to a certain

for a declining option value of the seats as departure approaches. These changes occur ‘hidden in
the background’, i.e. they are not visible to customers. Therefore, customers may observe fares
increasing over time, even though the average fare of the overall distribution effectively declines.
By doing so, strategic customers, who anticipate the declining option value of a seat, are deterred
from postponing their bookings in the hope of last-minute discounts (Alderighi et al., 2017).

8Figure 1 shows an example in which one day before departure there is just one seat left for sale
and its fare corresponds to the maximum of the fare distribution, i.e. demand is high and the bus
is about to sell out at the departure date. In many cases, demand is lower and the fare on the first
seat on sale never reaches the level of the maximum fare.
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Table 2: Summary statistics of the fare on first seat on sale

City pair Min Max Median Mean Mean per Obs.
100km

Brunswick - Düsseldorf 15.00 29.50 15.00 18.52 5.23 476
Hanover - Bremen 5.00 19.50 5.00 6.41 5.01 804
Munich - Nuremberg 5.00 19.90 7.90 9.10 5.38 4,284
Stuttgart - Milan 25.00 59.90 25.00 26.23 5.19 1,288
Tübingen - Freiburg 8.00 22.90 9.90 11.10 6.98 1,010
Overall 5.00 59.90 9.90 12.46 5.51 7,862

degree. However, a comparison of city pairs that are about the same length indicates
that competition may also play a role in the shape of the fare. Even though the
city pairs Munich-Nuremberg and Tübingen-Freiburg have almost the same distance
(respectively 169km and 159km), the average fare of the latter turns out to be higher
than the one of the former. Moreover, Tübingen-Freiburg displays the highest aver-
age fare per 100 kilometers among all city pairs (e6.98). This result is not surprising
as Tübingen-Freiburg is the only city pair of the sample in which Flixbus faces weak
competition.

The ratio of the maximum to the minimum value of the fare ranges from around
two (Brunswick-Düsseldorf: e29.50/e15.00) to around four (Munich-Nuremberg:
e19.90/e5.00); that is, the fare is found to be widely spread across the booking
period. In the sample the relative difference between the maximum and the mini-
mum value is more pronounced for short-haul routes (Hanover-Bremen, Tübingen-
Freiburg, and Munich-Nuremberg).

Most importantly, for each city pair the minimum of the fare coincides with the
starting bid, i.e., the lowest possible fare for a particular bus journey. This means that
for each city pair we are able to collect the very first fare class of the fare distribution.
A graphical representation of the evolution of the fare over time for each city pair
is presented in Figure 2, which plots the fractional-polynomial prediction of the fare
over the days to departure. Exception for the bottom-right diagram, which offers
an overall comparison across city pairs dividing the fare by the travel distance, each
diagram refers to a given city pair. The color and the pattern (i.e. dashed, dotted,
etc.) of the curves are consistent within the entire figure.

The pattern of the fare is similar in all the city pairs: it stays quite stable up
to seven days to departure, then it starts raising in the last week and finally grows
aggressively during the last four days to departure. This means that the fare is
described by an exponential function of time, where time is count top down by the
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days to departure.

Figure 2: Fare and days to departure (fractional-polynomial prediction)

Economic theory suggests that the steep increase of the fare a few days before
departure could be also explained by another effect than capacity. As departure date
approaches more consumers resolve their demand uncertainty, and, hence, mobility
service providers could rely on intertemporal price discrimination to segment cus-
tomers differing with respect to the time they realize their need to travel which may
reflect differences in their willingness to pay (Möller and Watanabe, 2010).

Empirical studies from the airline industry show that low-cost carriers employ
intertemporal price changes to profitably exploit customers’ heterogeneity (Gaggero,
2010; Alderighi et al., 2015, 2016). This strategy in particular allows to charge higher
fares close to departure when price-insensitive business travelers usually turn up for
booking. In contrast to the aviation industry, however, the demand for long-distance
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bus service largely consists of leisure passengers.9 From this perspective, segmenting
business and leisure travelers may appear less compelling to long-distance bus service
providers. Nevertheless, as high-uncertainty, thus late booking, travelers in general
exhibit a high valuation (Talluri and Van Ryzin, 2004), we cannot exclude that a fare
increase in the last days before departure is also a sign that Flixbus intertemporally
price discriminates.

Therefore, it remains unclear whether the increasing path of the fare is due to
the lack of available seats (price goes up because the bus fills up) and/or to the mere
proximity to departure (intertemporal price discrimination). The next section aims
to clarify this issue with the aid of econometrics.

5 Econometric analysis

5.1 Model

In order to model the behavior of the fare on the first seat on sale we need to
consider variables that can be related to the changes of fares. Findings from airline
pricing suggest that the dynamic pattern of fares can be described by both a capacity
component and a time component (Alderighi et al., 2017).

To investigate whether these forces are also into play in the long-distance bus
service industry, we include two types of regressors. The regressor accounting for
the capacity component is denoted by AvailabeSeats, which represents the number
of unsold seats on a bus at given day of booking; the time dimension is identified by
DaysToDeparture, which measures the temporal distance (in days) between the fare
query and the departure date.

The pricing model we estimate to separate capacity-based from time-based effects
is similar to the one proposed in Alderighi et al. (2015) and is summarized by the
following equation:

Farejt = β0 +
7∑

k=1

βkDaysToDeparturekt + β8AvailableSeatsjt + aj + ujt (1)

where the subscript j identifies a bus journey, which represents the panel indi-
vidual, uniquely defined by the route, date and departure time; the day of query t

9The long-distance bus passengers traveling to visit friends & relative plus the passengers trav-
eling for leisure and tourism are to about 83% of the total demand (IGES Institute, 2014).
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represents the time dimension of the panel and spans from 1 to 28 days. The depen-
dent variable Fare is the log of the fare on the first seat on sale;10 the independent
variables are summarized by AvailableSeats and DaysToDeparture; aj represents
the panel fixed-effects and ujt the error term, assumed i.i.d. with zero mean.11

The DaysToDeparture variable is decoded by a set of dummies which denote
when a fare query is made. Our dummy categorization gathers a sequence of consec-
utive days to departure on a week spell, except for the last week which comprises five
dummy variables: thus, we split DaysToDeparture into a total of eight dummies
denoting the fare query carried 1, 2, 3, 4-5, 6-7, 8-14, 15-21, 22-28 days to depar-
ture.12 The baseline for evaluating fare changes over time is the point furthest away
from departure, DaysToDeparture 22-28.

Two possible effects of DaysToDeparture working in the opposite direction may
exist in this context. First, we could observe a positive sign on theDaysToDeparture
dummies to indicate that fares increase with the departure date coming closer. If this
result still holds when we control for capacity, it would lend support to intertemporal
price discrimination.

Second, once we control for capacity, it is also possible to observe a negative
sign on the DaysToDeparture dummies. In a highly price-sensitive market, such
as the long-distance bus market, it may be reasonable to lower prices if there is
a considerably large number of unsold seats close to departure. This result would
indicate the existence of a decreasing option value of the seats.

As far as the capacity effect is concerned, we expect a negative sign on the
estimated coefficient of AvailableSeats. This result would confirm that the fare
increases as the bus fills up, i.e. the fare increases with AvailableSeats decreasing.

10As showed by Figure 2, the fare on the first seat on sale is an exponential function of the days
to departure, hence taking the logarithm log-linearizes the variable.

11Note that frequency is not included in the model since the bus journeys of the present analysis
are scheduled in the period September 4-10, 2017. In this respect, equation (1) may be considered
a short-run model.

12In principle we could also use one dummy variable for each day to departure. However, there
are two main reasons that speak against doing so. First, a check of the data suggests that there
is only little variation of the fare on the first seat on sale if DaysToDeparture takes on higher
values (i.e., the more time remains between booking and departure date). Hence, for high values
of DaysToDeparture, a ‘daily’ dummy variable would add little information to our model. Second,
the more dummies are used, the higher the number of parameters to be estimated in the regression,
and therefore also uncertainty in the model as standard errors tend to increase with the number of
regressors (Wooldridge, 2013, p. 93f.). These considerations lead to the above choice of the set of
dummy variables.
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5.2 Econometric issues

Before estimating the model there are two issues on AvailableSeats and one issue
related to possible shocks hitting the demand of all the bus journeys of a given city
pair that need to be considered.

Equation (1) comprises the panel fixed-effects term aj, which captures journey-
specific characteristics and time-invariant characteristics. Examples include bus-
specific features such as departure time and coach model; route-specific features
such as: competition and distance; city-specific features such as low/high income
city and tourism/business destination.13

Among these, the competitive environment on a particular route is likely to affect
the fare and be correlated with the independent variables, thereby giving rise to
endogeneity concerns (e.g., a lower competition on a route impacts both the fare
level and the number of sold seats, which eventually determine AvailableSeats).

The inclusion of the panel fixed-effects allows to fully control for all (i.e. observed
and unobserved) panel time-invariant characteristics and tackles the omitted variable
bias that would arise if time-invariant, journey-specific characteristics were ignored.

However, even with the use of panel fixed-effects, AvailableSeats may still be
endogenous because the fare distribution could be subject to discretionary interven-
tions by the RM analyst. For example, fares may be shifted downwards (upwards),
if there are more (less) seats unsold than expected. For this reason, the correct spec-
ification of the model would require including the RM decision amongst the set of
regressors. Because the logic triggering such RM behavior is unobservable, this effect
falls into the regression error term ujt. The endogeneity that arises here stems from
omitting a variable that explains the link between AvailableSeats and discretionary
RM interventions (Alderighi et al., 2015).

We tackle the endogeneity under omitted variable by means of an instrumen-
tal variable approach. A valid instruments z must satisfy two conditions. First,
z must comply the instrument exogeneity, which states that z is exogenous in
equation (1), i.e., Cov(z, u) = 0. Second, z must satisfy the instrument rele-
vance, which implies that z is able to explain the variation in AvailableSeats, i.e.,
Cov(z, AvailableSeats) 6= 0.

Thus, we need to find at least one instrument which is correlated withAvailableSeats,
but uncorrelated with the error term ujt. In the spirit of Alderighi et al. (2015)
and Bilotkach et al. (2015), we identify one instrument for the endogenous capac-
ity component that can suit our model. The instrument is a dummy variable that

13Table A.3.1 in Appendix A.3 reports the pooled ordinary least squares estimation in which
within-group time-invariant variables are included.
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indicates whether a fare is collected during the weekend, WeekendBook. The un-
derlying idea is that manual RM interventions are less likely during weekends, since
limited RM staff is available; moreover, the booking behavior is also likely to be
different during weekends.14 This makes WeekendBook in theory a valid instru-
ment for AvailableSeats; formal tests in favor of the relevance and exgogeneity of
WeekendBook, reported in Appendix A.2, confirm the instrument validity also in
practice.

Besides endogeneity, another possible concern related to AvailableSeats is that
this variable is censored at 40 seats. This is due to the data collection procedure
described in Section 3 and implies that AvailableSeats = 40 provides only the in-
formation that there are at least 40 seats available for booking.

Studies related to airline pricing tackle censoring of available seats by means
of Tobit specifications (Alderighi et al., 2015) or Probit (Alderighi et al., 2017).
The procedure consists in computing the regression residual (Tobit approach) or
the inverse Mills’ ratio (Probit approach) from an auxiliary regression in which the
dependent variable is AvailableSeats. Then the main model is estimated using only
the uncensored observations and including the Tobit residual or the inverse Mills’
ratio among its regressors to correct for the sample selection (Heckman, 1979).

In general, however, we expect censoring at 40 seats to be a minor issue in our
sample, since the difference between the censored and the actual value ofAvailableSeats
is very likely to be smaller in buses than in airplanes: 40 seats represent only a frac-
tion of an airplane’s capacity, while they are relatively close to the maximum capacity
of a bus.

Because the techniques correcting for censoring reduce the number of observations
and because our sample comprises a rather small amount of uncensored observations,
we deem that the costs of correcting for the sample selection outweigh the benefits.
Nevertheless, the results correcting for sample selection are presented in the analysis.
We run a model with Tobit specification following procedure 17.4 in Wooldridge
(2002, p. 573ff.); among the regressors of the Tobit specification we include the day
of the week of departure. Similar qualitative results are obtained when the correction
for sample selection is implemented with Probit (not reported to save space but
available upon request.)

14Alderighi et al. (2015) and Bilotkach et al. (2015) also use another instrument that captures the
flight-specific slope of the fare distribution. For each day to departure this instrument is constructed
using the lagged values of the preceding weeks for a particular day of departure. Because we have
only bus journeys for a week in our sample, we cannot construct the second instrument (e.g., we
observe the bus journeys leaving on Monday September 4th, 2017 and not the bus journeys leaving
on the previous Mondays).
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Finally, standard errors are clustered by city pairs, to allow the residuals of
different bus journeys on the same city pair to be correlated. This choice of clusters
takes care of possible shocks that are common to all journeys on a specific city
pair and that may hit the demand (e.g. a famous festival taking place in one city,
temporary road works delaying the bus journey, etc.).

5.3 Results

The results of our empirical analysis are summarized in Table 3. Five different
models are reported. Models (1) and (2) stem from an ordinary least squares (OLS)
regression. Model (3) is obtained from an instrumental variable (IV) approach in
which WeekendBook is used as instrument. Model (4) comes also from the same IV
procedure, but it only considers uncensored observations in order to be comparable
to Model (5), which originates from the aforementioned procedure of sample selection
correction.

The coefficient of AvailableSeats is negative and statistically significant in all
estimations. This result supports the idea that the number of unsold seats is neg-
atively related to the fare or, in other words, that the fare is set as an increasing
function of capacity utilization.

The magnitude of this effect varies among models. The OLS estimation of Model
(2) yields the lowest coefficient, where the sale of an additional seat is associated
with an increase in fare by 1.3 percent on average.15 Using the IV approach returns
a slightly more pronounced capacity effect. In Model (3) an additional sold seat
implies an increase of fare by 2.5 percent. At the mean value of the fare on the
first seat on sale (e12.46, see Table 2) this effect quantifies in a price increase of
around e0.31.16 This finding indicates that the increase in fare, once a seat is sold,
is moderate on average. Such a conclusion is consistent with the descriptive analysis
of the previous section: because the majority of passengers are price-sensitive leisure
travelers, they would probably refrain from traveling, should they see a sharp increase
in fare. In this respect, the effect of capacity on fares must not be excessive.

The second effect on fare is the day of the booking, which is captured by seven
DaysToDeparture dummies. Model (1) shows that the fare on the first seat on sale
follows an increasing temporal profile also in our sample, in line the pattern docu-

15Since equation (1) is a log-level model, the marginal effect of AvailableSeats on the depen-
dent variable is obtained as %∆Fare = 100β1∆AvailableSeats, where %∆Fare is the percentage
variation of the first seat on sale. Note that selling one seat means ∆AvailableSeats = −1.

16The computation using the estimates from Model (4) and (5) yields very similar results, demon-
strating our presumption that censoring is a minor issue in our sample.
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Table 3: Results

(1) (2) (3) (4) (5)
OLS-FE OLS-FE IV-FE IV-FE IV-FE

Days to departure 1 0.145*** -0.053** -0.245* -0.395*** -0.598***
(0.025) (0.014) (0.126) (0.106) (0.177)

Days to departure 2 0.080** -0.046** -0.170** -0.297*** -0.471***
(0.023) (0.013) (0.084) (0.086) (0.147)

Days to departure 3 0.063** -0.026** -0.113* -0.215*** -0.381***
(0.016) (0.008) (0.061) (0.074) (0.128)

Days to departure 4-5 0.036* -0.017* -0.068* -0.141** -0.287***
(0.014) (0.007) (0.039) (0.065) (0.108)

Days to departure 6-7 0.024 -0.004 -0.031 -0.070 -0.202**
(0.011) (0.008) (0.022) (0.055) (0.090)

Days to departure 8-14 0.012 0.001 -0.009 -0.014 -0.088
(0.008) (0.007) (0.010) (0.050) (0.065)

Days to departure 15-21 0.001 -0.001 -0.004 0.004 -0.014***
(0.005) (0.005) (0.003) (0.006) (0.004)

Available seats -0.013*** -0.025*** -0.029*** -0.033***
(0.001) (0.010) (0.004) (0.005)

Tobit residual 0.021***
(0.005)

R2 0.108 0.262 0.112 0.263 0.408
Observations 7,862 7,862 7,862 1,849 1,849

NOTE. Dependent variable: natural logarithm of fare on the first seat on sale. Panel fixed-effects estimation. The
statistical significance at 1%, at 5% and at 10% level of the estimated coefficients is denoted respectively by ***, **
and *. The standard errors are clustered by city pairs.

mented in Figure 2. However, this effect disappears once we control for capacity, in
Models (2)-(5). More interestingly, the negative coefficients on theDaysToDeparture
dummies indicate that, keeping capacity constant, fares tend to decline as departure
approaches. This finding supports the existence of a temporal effect on fares under
the decreasing option value of seats rather than under intertemporal price discrimi-
nation.

The reason of this result may stem from the structure of the demand. As previ-
ously discussed, the demand for long-distance bus service consists of an overwhelm-
ing majority of leisure (price-sensitive) travelers and a negligible number of business
(price-insensitive) travelers. For this reason, the intertemporal price discrimination
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strategy as it is adopted by airline carriers becomes unsuitable to the bus industry,
where instead the decreasing option value of the seat prevails.

In other words, our estimates suggest that fares tend to be adjusted downwards,
if there is a substantial number of unsold seats in the close proximity of departure.
Möller and Watanabe (2010) state that such a conduct is optimal when capacity is
relatively abundant and consumer valuation is relatively low. Both conditions appear
to be applicable for the long-distance bus service industry.

Finally, the conclusions do not change qualitative using censored data, also with
the correction of the sample selection. That is, our findings are confirmed with a
different number of observations and with a different estimation approach.

To sum up, our empirical analysis suggests that bus fares are driven by the
level of demand and capacity utilization in the first place. On the one hand, the
positive relation between fares and capacity utilization reflects the cost of keeping
seat inventory for uncertain events of high demand (Dana, 1999a); on the other hand,
capacity-based fare increases may also aim at shifting demand from peak to off-peak
departure times: travelers with a high valuation for departure during peak time will
be charged more than those who are willing to go for off-peak departure times (Dana,
1999b).

6 Conclusion

In this paper we have studied empirically the price dynamics of the long-distance
bus service industry. We have used fare data by Flixbus, the leading intercity bus
company in Europe, collected from 28 days up to 1 day before departure on a daily
basis. Although our sample comprises a relatively limited number of city pairs, they
represent the portfolio of Flixbus routes which are heterogeneous in terms of distance,
competition, per capita income at endpoints’ cities, etc.

We have applied panel fixed-effects techniques and corrected for both endogeneity
and sample selection. We have found that at a given point in time the fare is
an increasing stepwise function of the number of sold seats. As we approach the
departure date, the fare on the first seat on sale, i.e. the lowest available fare,
increases because seats sell during the booking period.

Holding the number of available seats constant, the perishable nature of the
product translates into a decreasing option value of each seat. This effect tends to
push fares down as the departure date approaches in order to increase the chance of
selling more seats. This is in line with the theoretical model of Sweeting (2012) that
predicts a declining time-path due to a falling option value of each seat. We find
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statistically significant evidence supporting this effect during the last week before
departure, when the pressure on the declining option values is more marked.

At last, but not least, we find no price effect referable to intertemporal price
discrimination, that is, there is no evidence in favor of increasing fares in proximity
of the departure, irrespective of the load factor, in order to extract more surplus from
price-insensitive late bookers. This result may most likely depend on the composition
of demand for long-distance bus service, which is quite homogeneous, consisting
almost exclusively of price-sensitive travelers.

Our analysis has shown that the long-distance bus service industry adopts some
of the revenue management practices which started in the airline industry. Despite
the analogies in the revenue management techniques, these two industries show some
differences. In the long-distance bus service industry, the seat availability may differ
within the journey because the bus may make multiple stops before reaching its final
destination. This feature does not characterize the airline industry, where the cases
of an aircraft stopping over to board more passengers represent the exception rather
than the rule. The passengers’ heterogeneity is more evident in the airline industry,
where more price-insensitive passengers are likely to show up near the departure date,
than in the long-distance bus service industry, where passengers are predominantly
price-sensitive irrespective of the day of the booking. These differences may explain
why our results do not exactly overlap with the empirical findings in the airline sector
(Alderighi et al., 2015, 2017).

Future research could expand the present analysis exploiting the entire fare dis-
tribution to gain more insights on the dynamic pricing in the industry. The study
of Alderighi et al. (2017) provides a theoretical framework for this purpose. Fur-
thermore, it would be interesting to investigate thoroughly how the fare distribution
differs among routes with low and high competition, above all by other means of
transport such as trains or airplanes (Fageda and Sansano, 2018; Knorr and Lueg-
Arndt, 2016). From a theoretical point of view fares are expected to become more
dispersed as firms face more competitive markets (Dana, 1999a).

Despite the long-distance bus service industry is very young in Europe, it is
becoming an established mean of transport to link cities, also internationally. As the
market grows, more sophisticated pricing techniques may be put in place.

Moreover, as the process of European integration continues, long-distance buses
in Europe are becoming a closer substitute of trains or even airplanes (Alvarez-
SanJaime et al., 2015; Capozza, 2016). Some complementarities between different
means of transport may also emerge: for example, people may combine a point-to-
point flight with a long-distance bus to their final destination, if the flight lands
in another city. The interlink among transport industries, the implications of long-
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distance bus service on railway and air transportation, and their sustainability are
bound to become an important topic of debate in the near future.
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Dürr, N. S. and Hüschelrath, K. (2017). Patterns of entry and exit in the deregulated
German interurban bus industry. Transport Policy, 59:196–208.

Fageda, X. and Sansano, S. (2018). Factors influencing prices and frequencies in the
interurban bus market: evidence from Europe. Transportation Research Part A:
Policy and Practice, 111:266–276.

Federal Office for Goods Transport (2016). Marktbeobachtung Güterverkehr. Mark-
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A Appendix

A.1 Data collection process

The data collection hinges on the following steps.
Step 1: Start a daily fare query to Flixbus’ website for a bus journey that connects
a given city pair on a specific departure date within the scheduled departure period
September 4 to September 10, 2017. The query algorithm begins with a request for
the fare of one seat, and then iterates with a request of the fares for 2, 3, up to
40 seats, which represent the largest party for a single booking allowed on Flixbus’
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website. The bus journey is scheduled D days after the query date, with D taking on
values within the range: 1, 2, up to 28 (e.g., D = 1 means there is one day separating
the query date from the departure date).
Step 2: Two scenarios can be faced:
i) The website returns a valid total fare for the entire query requesting between 1
and 40 seats on a specific bus journey. In this case we can only infer that there are
at least 40 seats available on this particular bus journey at D days before departure.
We have no precise information on the bus’ load factor because more than 40 seats
could be on sale (i.e., the datum is censored).
ii) The website returns a valid total fare for n < 40 seats on a specific bus journey.
In this case the datum is not censored and we can infer the exact number of seats
remaining available for booking on the observed journey.
Step 3: As the website returns the total fare for the n seats requested, we obtain
the fare of each single seat using the algorithm pn = Pn − Pn−1 for n = 2, 3, ..., 40;
where pn is the bus fare of the nth seat and Pn is the total fare returned for a query
requesting n seats. The fare on the first seat is given by p1 = P1 and constitutes the
initial condition to solve the algorithm recursively.

A.2 Instrument relevance and exogeneity

Model (6) in Table A.2.1 reports the first-stage estimates of Model (3) in Table 3.
The dependent variable is AvailableSeats, hence the negative and highly statisti-
cally significant coefficients on the DaysToDeparture dummies indicates that the
number of available seats decreases as we approach the departure date, in line with
the expectations. This effect is monotonic, as it must be, because more seats are sold
and less are available on a bus as time goes by. Interestingly, the higher magnitude
in absolute terms of the coefficients on DaysToDeparture 6-7 up to DaysToDepar-
ture 1 indicates that the largest part of the booking occurs during the last week
before departure, thereby confirming a documented feature of the long-distance bus
industry.

Furthermore, and more importantly, the instrument WeekendBook is found
highly statistically significant, with a p-value below 1%. This finding points in fa-
vor of a strong correlation between WeekendBook and AvailableSeats and lends
support to the instrument relevance condition of WeekendBook.

To verify the instrument exogeneity condition, we include WeekendBook among
the regressors of the FE-OLS estimation of the main model, i.e. Model (3) of Table 3.
If WeekendBook were statistically insignificant from zero, it would sustain the pre-
sumption that the variable is exogenous because WeekendBook would have nothing
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to explain in the model. As Model (7) shows, WeekendBook is highly statistically
insignificant (with a p-value of about 30%), thereby supporting the exogeneity of
WeekendBook.

It is also worth noticing that the inclusion of WeekendBook in the regression of
Model (7) does not affect the estimated coefficients of the other regressors, which are
practically the equivalent, both in terms of magnitude and significance, to the ones
reported in Model (3). This result shows that WeekendBook has no explanatory
power in equation (1) and corroborates the full exogeneity and, hence, validity of
this variable as instrument for AvailableSeats.

A.3 Pooled regression

Table A.3.1 is the pooled OLS version of Table 3. The additional independent vari-
ables included in the pooled OLS regression are time-invariant within a given bus
journey and aim to parallel the model estimated on similar data for airline fares
(Stavins, 2001). Thus, we add the route distance in km, Distance; the geometric
mean of population at the end points of the route, Population; the geometric mean
of per capita income, CapitaIncome;17 and a dummy variable equal to one if on
the route there is no public-transport alternative (i.e., no direct air connection nor
reasonable train service) to Flixbus, FlixbusOnly.

Distance is a proxy for costs, Population captures the dimension of the market,
CapitaIncome the wealth of the market, and finally FlixbusOnly aims to relate to
route competition, since the absence of product substitutability may translate into
stronger market power.18

The estimates on the variables of interest, DaysToDeparture dummies and
AvailableSeats, follow the exact same pattern they have shown in the columns of
Table 3. As far as the new regressors are concerned, Distance is correctly posi-
tively signed, since longer bus journeys cost more. The negative coefficient on the
Population variable shows that the gains from economies of density due to larger
markets are passed through to consumers by means of lower fares, similarly to what
observed in the airline industry (Brueckner and Spiller, 1994); however, the positive
sign on CapitaIncome variable indicates that wealthier routes pay a fare premium.

17Population and per capita income are respectively measured in hundred thousands and thou-
sands. Data are obtained from the German Federal Statistical Office and the Land Statistical Offices
except for Milan, whose population datum is collected from the Italian Statistical Office (ISAT),
and per capita income from the Regional Statistical Yearbook of Lombardy (ASR Lombardia).

18We acknowledge the possible endogeneity of any (proxy of) competition variables included in
a price equation. However, the endogeneity of Flixbus only is beyond the scope of these estimates,
which should be treated with cautions in any case, since they ignore any panel fixed-effects.

27



Finally, the positive sign on the FlixbusOnly variable suggests that there is a pos-
itive correlation between fares and competition. A rough quantification of the com-
petition effect on fares, i.e. neglecting the possible endogeneity of the FlixbusOnly
variable, indicates that on routes where there is no public-transport alternative to
Flixbus fares are about 31% more expensive than on routes where Flixbus faces some
extent of competition.
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Table A.2.1: Instrument relevance and exogeneity

(6) (7)
OLS-FE OLS-FE

Dependent variable Available seats log(Fare)

Days to departure 1 -15.367*** -0.052**
(1.804) (0.014)

Days to departure 2 -9.837*** -0.046**
(1.279) (0.013)

Days to departure 3 -6.924*** -0.026**
(0.992) (0.008)

Days to departure 4-5 -4.118*** -0.017*
(0.584) (0.007)

Days to departure 6-7 -2.142*** -0.004
(0.277) (0.008)

Days to departure 8-14 -0.800*** 0.001
(0.093) (0.007)

Days to departure 15-21 -0.178** -0.001
(0.045) (0.005)

Available seats -0.013***
(0.001)

Weekend booking 0.196*** -0.002
(0.031) (0.002)

R2 0.586 0.262
Observations 7,862 7,862

NOTE. Panel fixed-effects estimation. The statistical significance at 1%, at 5% and at 10% level of the estimated
coefficients is denoted respectively by ***, ** and *. The standard errors are clustered by city pairs.
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Table A.3.1: Pooled ordinary least squares estimation

(8) (9) (10) (11) (12)
OLS-Pooled OLS-Pooled IV-Pooled IV-Pooled IV-Pooled

Days to departure 1 0.148*** -0.141** -0.264** -1.459* -1.040***
(0.026) (0.042) (0.112) (0.873) (0.203)

Days to departure 2 0.080** -0.105** -0.184** -1.072* -0.850***
(0.023) (0.030) (0.074) (0.592) (0.170)

Days to departure 3 0.062** -0.068** -0.123** -0.780** -0.710***
(0.015) (0.023) (0.054) (0.391) (0.155)

Days to departure 4-5 0.036* -0.042** -0.075** -0.521** -0.546***
(0.013) (0.013) (0.035) (0.246) (0.124)

Days to departure 6-7 0.023* -0.017* -0.034* -0.291** -0.406***
(0.011) (0.006) (0.020) (0.120) (0.101)

Days to departure 8-14 0.012 -0.003 -0.010 -0.190*** -0.238***
(0.008) (0.006) (0.010) (0.067) (0.075)

Days to departure 15-21 0.001 -0.002 -0.003 -0.098 -0.094***
(0.005) (0.004) (0.003) (0.062) (0.015)

Available seats -0.019*** -0.027*** -0.101* -0.046***
(0.003) (0.009) (0.057) (0.005)

Distance 0.004*** 0.004*** 0.004*** 0.003*** 0.003***
(0.000) (0.000) (0.000) (0.000) (0.000)

Population -0.021*** -0.020*** -0.019*** -0.013 -0.022***
(0.000) (0.000) (0.001) (0.008) (0.001)

Capita income 0.012*** 0.011*** 0.010*** 0.003 0.013***
(0.000) (0.000) (0.000) (0.007) (0.001)

Flixbus only 0.383*** 0.334*** 0.313*** -0.089 0.337***
(0.000) (0.009) (0.023) (0.289) (0.021)

Tobit residual 0.028***
(0.005)

R2 0.760 0.778 0.775 0.506 0.742
Observations 7,862 7,862 7,862 1,881 1,881

NOTE. Dependent variable: natural logarithm of fare on the first seat on sale. Constant included but not reported.
The statistical significance at 1%, at 5% and at 10% level of the estimated coefficients is denoted respectively by ***,
** and *. The standard errors are clustered by city pairs.
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